Flink —— 状态

0
(0)

在本节中,您将了解Flink为编写有状态程序提供的api。请参阅有状态流处理以了解有状态流处理背后的概念。

Keyed DataStream

如果要使用keyed state,首先需要在DataStream上指定一个键,该键应该用于对状态(以及流本身的记录)进行分区。你可以在DataStream上使用Java/Scala API中的keyBy(KeySelector)或Python API中的key_by(KeySelector)指定一个键。这将产生一个KeyedStream,然后允许使用键态的操作。

键选择器函数接受一条记录作为输入,并返回该记录的键。键可以是任何类型,并且必须从确定性计算中派生出来。

Flink的数据模型不是基于键值对的。因此,不需要将数据集类型物理地打包到键和值中。键是“虚拟的”:它们被定义为实际数据之上的函数,以指导分组操作符。

下面的例子展示了一个简单地返回对象字段的键选择器函数:

// some ordinary POJO
public class WC {
  public String word;
  public int count;

  public String getWord() { return word; }
}
DataStream<WC> words = // [...]
KeyedStream<WC> keyed = words
  .keyBy(WC::getWord);

Tuple Keys and Expression Keys

Flink还有两种定义键的替代方法:在Java/Scala API中定义元组键和表达式键(Python API仍然不支持)。这样,您就可以使用元组字段索引或表达式来指定键,以选择对象的字段。我们现在不推荐使用这些工具,但是您可以参考DataStream的Javadoc来了解它们。使用KeySelector函数是绝对优越的:使用Java lambda函数,它们很容易使用,并且在运行时可能有更少的开销.

使用 Keyed State

keyed state 接口提供不同类型状态的访问接口,这些状态都作用于当前输入数据的 key 下。换句话说,这些状态仅可在 KeyedStream 上使用,在Java/Scala API上可以通过 stream.keyBy(...) 得到 KeyedStream,在Python API上可以通过 stream.key_by(...) 得到 KeyedStream

接下来,我们会介绍不同类型的状态,然后介绍如何使用他们。所有支持的状态类型如下所示:

  • ValueState<T>: 保存一个可以更新和检索的值(如上所述,每个值都对应到当前的输入数据的 key,因此算子接收到的每个 key 都可能对应一个值)。 这个值可以通过 update(T) 进行更新,通过 T value() 进行检索。
  • ListState<T>: 保存一个元素的列表。可以往这个列表中追加数据,并在当前的列表上进行检索。可以通过 add(T) 或者 addAll(List<T>) 进行添加元素,通过 Iterable<T> get() 获得整个列表。还可以通过 update(List<T>) 覆盖当前的列表。
  • ReducingState<T>: 保存一个单值,表示添加到状态的所有值的聚合。接口与 ListState 类似,但使用 add(T) 增加元素,会使用提供的 ReduceFunction 进行聚合。
  • AggregatingState<IN, OUT>: 保留一个单值,表示添加到状态的所有值的聚合。和 ReducingState 相反的是, 聚合类型可能与 添加到状态的元素的类型不同。 接口与 ListState 类似,但使用 add(IN) 添加的元素会用指定的 AggregateFunction 进行聚合。
  • MapState<UK, UV>: 维护了一个映射列表。 你可以添加键值对到状态中,也可以获得反映当前所有映射的迭代器。使用 put(UK,UV) 或者 putAll(Map<UK,UV>) 添加映射。 使用 get(UK) 检索特定 key。 使用 entries()keys()values() 分别检索映射、键和值的可迭代视图。你还可以通过 isEmpty() 来判断是否包含任何键值对。

所有类型的状态还有一个clear() 方法,清除当前 key 下的状态数据,也就是当前输入元素的 key。

请牢记,这些状态对象仅用于与状态交互。状态本身不一定存储在内存中,还可能在磁盘或其他位置。 另外需要牢记的是从状态中获取的值取决于输入元素所代表的 key。 因此,在不同 key 上调用同一个接口,可能得到不同的值。

你必须创建一个 StateDescriptor,才能得到对应的状态句柄。 这保存了状态名称(正如我们稍后将看到的,你可以创建多个状态,并且它们必须具有唯一的名称以便可以引用它们), 状态所持有值的类型,并且可能包含用户指定的函数,例如ReduceFunction。 根据不同的状态类型,可以创建ValueStateDescriptorListStateDescriptorAggregatingStateDescriptor, ReducingStateDescriptorMapStateDescriptor

状态通过 RuntimeContext 进行访问,因此只能在 rich functions 中使用。请参阅这里获取相关信息, 但是我们很快也会看到一个例子。RichFunctionRuntimeContext 提供如下方法:

  • ValueState<T> getState(ValueStateDescriptor<T>)
  • ReducingState<T> getReducingState(ReducingStateDescriptor<T>)
  • ListState<T> getListState(ListStateDescriptor<T>)
  • AggregatingState<IN, OUT> getAggregatingState(AggregatingStateDescriptor<IN, ACC, OUT>)
  • MapState<UK, UV> getMapState(MapStateDescriptor<UK, UV>)

下面是一个 FlatMapFunction 的例子,展示了如何将这些部分组合起来:

public class CountWindowAverage extends RichFlatMapFunction<Tuple2<Long, Long>, Tuple2<Long, Long>> {

    /**
     * The ValueState handle. The first field is the count, the second field a running sum.
     */
    private transient ValueState<Tuple2<Long, Long>> sum;

    @Override
    public void flatMap(Tuple2<Long, Long> input, Collector<Tuple2<Long, Long>> out) throws Exception {

        // access the state value
        Tuple2<Long, Long> currentSum = sum.value();

        // update the count
        currentSum.f0 += 1;

        // add the second field of the input value
        currentSum.f1 += input.f1;

        // update the state
        sum.update(currentSum);

        // if the count reaches 2, emit the average and clear the state
        if (currentSum.f0 >= 2) {
            out.collect(new Tuple2<>(input.f0, currentSum.f1 / currentSum.f0));
            sum.clear();
        }
    }

    @Override
    public void open(Configuration config) {
        ValueStateDescriptor<Tuple2<Long, Long>> descriptor =
                new ValueStateDescriptor<>(
                        "average", // the state name
                        TypeInformation.of(new TypeHint<Tuple2<Long, Long>>() {}), // type information
                        Tuple2.of(0L, 0L)); // default value of the state, if nothing was set
        sum = getRuntimeContext().getState(descriptor);
    }
}

// this can be used in a streaming program like this (assuming we have a StreamExecutionEnvironment env)
env.fromElements(Tuple2.of(1L, 3L), Tuple2.of(1L, 5L), Tuple2.of(1L, 7L), Tuple2.of(1L, 4L), Tuple2.of(1L, 2L))
        .keyBy(value -> value.f0)
        .flatMap(new CountWindowAverage())
        .print();

// the printed output will be (1,4) and (1,5)

这个例子实现了一个简单的计数窗口。 我们把元组的第一个元素当作 key(在示例中都 key 都是 “1”)。 该函数将出现的次数以及总和存储在 “ValueState” 中。 一旦出现次数达到 2,则将平均值发送到下游,并清除状态重新开始。 请注意,我们会为每个不同的 key(元组中第一个元素)保存一个单独的值。

状态有效期 (TTL)

任何类型的 keyed state 都可以有 有效期 (TTL)。如果配置了 TTL 且状态值已过期,则会尽最大可能清除对应的值,这会在后面详述。

所有状态类型都支持单元素的 TTL。 这意味着列表元素和映射元素将独立到期。

在使用状态 TTL 前,需要先构建一个StateTtlConfig 配置对象。 然后把配置传递到 state descriptor 中启用 TTL 功能:

import org.apache.flink.api.common.state.StateTtlConfig;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.api.common.time.Time;

StateTtlConfig ttlConfig = StateTtlConfig
    .newBuilder(Time.seconds(1))
    .setUpdateType(StateTtlConfig.UpdateType.OnCreateAndWrite)
    .setStateVisibility(StateTtlConfig.StateVisibility.NeverReturnExpired)
    .build();

ValueStateDescriptor<String> stateDescriptor = new ValueStateDescriptor<>("text state", String.class);
stateDescriptor.enableTimeToLive(ttlConfig);

TTL 配置有以下几个选项: newBuilder 的第一个参数表示数据的有效期,是必选项。

TTL 的更新策略(默认是 OnCreateAndWrite):

  • StateTtlConfig.UpdateType.OnCreateAndWrite – 仅在创建和写入时更新
  • StateTtlConfig.UpdateType.OnReadAndWrite – 读取时也更新

数据在过期但还未被清理时的可见性配置如下(默认为 NeverReturnExpired):

  • StateTtlConfig.StateVisibility.NeverReturnExpired – 不返回过期数据
  • StateTtlConfig.StateVisibility.ReturnExpiredIfNotCleanedUp – 会返回过期但未清理的数据

NeverReturnExpired 情况下,过期数据就像不存在一样,不管是否被物理删除。这对于不能访问过期数据的场景下非常有用,比如敏感数据。 ReturnExpiredIfNotCleanedUp 在数据被物理删除前都会返回。

注意:

  • 状态上次的修改时间会和数据一起保存在 state backend 中,因此开启该特性会增加状态数据的存储。 Heap state backend 会额外存储一个包括用户状态以及时间戳的 Java 对象,RocksDB state backend 会在每个状态值(list 或者 map 的每个元素)序列化后增加 8 个字节。
  • 暂时只支持基于 processing time 的 TTL。
  • 尝试从 checkpoint/savepoint 进行恢复时,TTL 的状态(是否开启)必须和之前保持一致,否则会遇到 “StateMigrationException”。
  • TTL 的配置并不会保存在 checkpoint/savepoint 中,仅对当前 Job 有效。
  • 当前开启 TTL 的 map state 仅在用户值序列化器支持 null 的情况下,才支持用户值为 null。如果用户值序列化器不支持 null, 可以用 NullableSerializer 包装一层。
  • State TTL 当前在 PyFlink DataStream API 中还不支持。

过期数据的清理

默认情况下,过期数据会在读取的时候被删除,例如 ValueState#value,同时会有后台线程定期清理(如果 StateBackend 支持的话)。可以通过 StateTtlConfig 配置关闭后台清理:

import org.apache.flink.api.common.state.StateTtlConfig;

StateTtlConfig ttlConfig = StateTtlConfig
    .newBuilder(Time.seconds(1))
    .disableCleanupInBackground()
    .build();

全量快照时进行清理

另外,你可以启用全量快照时进行清理的策略,这可以减少整个快照的大小。当前实现中不会清理本地的状态,但从上次快照恢复时,不会恢复那些已经删除的过期数据。 该策略可以通过 StateTtlConfig 配置进行配置:

import org.apache.flink.api.common.state.StateTtlConfig;
import org.apache.flink.api.common.time.Time;

StateTtlConfig ttlConfig = StateTtlConfig
    .newBuilder(Time.seconds(1))
    .cleanupFullSnapshot()
    .build();

这种策略在 RocksDBStateBackend 的增量 checkpoint 模式下无效。

注意:

  • 这种清理方式可以在任何时候通过 StateTtlConfig 启用或者关闭,比如在从 savepoint 恢复时。
增量数据清理 #

另外可以选择增量式清理状态数据,在状态访问或/和处理时进行。如果某个状态开启了该清理策略,则会在存储后端保留一个所有状态的惰性全局迭代器。 每次触发增量清理时,从迭代器中选择已经过期的数进行清理。

该特性可以通过 StateTtlConfig 进行配置:

import org.apache.flink.api.common.state.StateTtlConfig;
 StateTtlConfig ttlConfig = StateTtlConfig
    .newBuilder(Time.seconds(1))
    .cleanupIncrementally(10, true)
    .build();

该策略有两个参数。 第一个是每次清理时检查状态的条目数,在每个状态访问时触发。第二个参数表示是否在处理每条记录时触发清理。 Heap backend 默认会检查 5 条状态,并且关闭在每条记录时触发清理。

注意:

  • 如果没有 state 访问,也没有处理数据,则不会清理过期数据。
  • 增量清理会增加数据处理的耗时。
  • 现在仅 Heap state backend 支持增量清除机制。在 RocksDB state backend 上启用该特性无效。
  • 如果 Heap state backend 使用同步快照方式,则会保存一份所有 key 的拷贝,从而防止并发修改问题,因此会增加内存的使用。但异步快照则没有这个问题。
  • 对已有的作业,这个清理方式可以在任何时候通过 StateTtlConfig 启用或禁用该特性,比如从 savepoint 重启后。
在 RocksDB 压缩时清理

如果使用 RocksDB state backend,则会启用 Flink 为 RocksDB 定制的压缩过滤器。RocksDB 会周期性的对数据进行合并压缩从而减少存储空间。 Flink 提供的 RocksDB 压缩过滤器会在压缩时过滤掉已经过期的状态数据。

该特性可以通过 StateTtlConfig 进行配置:

import org.apache.flink.api.common.state.StateTtlConfig;

StateTtlConfig ttlConfig = StateTtlConfig
    .newBuilder(Time.seconds(1))
    .cleanupInRocksdbCompactFilter(1000)
    .build();

Flink 处理一定条数的状态数据后,会使用当前时间戳来检测 RocksDB 中的状态是否已经过期, 你可以通过 StateTtlConfig.newBuilder(...).cleanupInRocksdbCompactFilter(long queryTimeAfterNumEntries) 方法指定处理状态的条数。 时间戳更新的越频繁,状态的清理越及时,但由于压缩会有调用 JNI 的开销,因此会影响整体的压缩性能。 RocksDB backend 的默认后台清理策略会每处理 1000 条数据进行一次。

你还可以通过配置开启 RocksDB 过滤器的 debug 日志: log4j.logger.org.rocksdb.FlinkCompactionFilter=DEBUG

注意:

  • 压缩时调用 TTL 过滤器会降低速度。TTL 过滤器需要解析上次访问的时间戳,并对每个将参与压缩的状态进行是否过期检查。 对于集合型状态类型(比如 list 和 map),会对集合中每个元素进行检查。
  • 对于元素序列化后长度不固定的列表状态,TTL 过滤器需要在每次 JNI 调用过程中,额外调用 Flink 的 java 序列化器, 从而确定下一个未过期数据的位置。
  • 对已有的作业,这个清理方式可以在任何时候通过 StateTtlConfig 启用或禁用该特性,比如从 savepoint 重启后。

这篇文章有用吗?

平均评分 0 / 5. 投票数: 0

到目前为止还没有投票!成为第一位评论此文章。

很抱歉,这篇文章对您没有用!

让我们改善这篇文章!

告诉我们我们如何改善这篇文章?